Course ID | Course | Professor | Time | Location |
Basics Trigonometry | - |
Basics Trigonometry
![](https://i0.wp.com/www.ibusciencecollege.com/wp-content/uploads/2015/04/Basic-Mathematics-6-001-e1428959455681.jpg)
other essential relations
sin²α + cos²α = 1
cos²α – sin²α = cos2α
2 + sin²α – 2cos²α = 3sin²α
sinα * cosα = [sin2α]/2
3sinα – 4 sin³α = 3sinα
4cos³α – 3cosα = cos3α
2tanα/(1 – tan²α) = tan2α
(3tanα -tan³α)/(1 – tan²α) = tan3α
(1 – cosα)/2 = sin²(α/2)
(1 + cosα)/2 = cos²(α/2)
(1 – cosα)/(1 + cosα) = tan²(α/2)
(1 – cosα)/sinα = sinα/(1 + cosα) = tan(α/2)
tanα * cotα = 1
1/cos²α = 1 + tan²α
1 /sin²α = 1 + cot²α
Addition theorems
sin(90° – α) = sin(90° + α) = cos(360° – α) = cos(-α) = cosα
cos(180° – α) = cos(180° + α) = -cosα
sin(180° – α) = cos(90° – α) = sinα
sin(180° + α) = sin(360° – α) = sin(-α) = -sinα
tan(180° – α) = cot(90 + α) = tan(-α) = -tanα
tan(90 + α) = cot(180 – α) = cot(-α) = -cotα
sin(α +/- β) = sinα*cosβ +/- cosα*sinβ
cos(α +/- β) = cosα*cosβ -/+ sinα*sinβ
tan(α +/- β) = (tanα +/- tanβ)/(1 -/+ tanα*tanβ)
sinα + sinβ = 2sin[(α + β)/2]*cos[(α – β)/2)]
sinα – sinβ = 2cos[(α + β)/2]*sin[(α – β)/2]
cosα + cosβ = 2cos[(α + β)/2]*cos[(α – β)/2]
cosα – cosβ = -2sin[(α + β)/2]*sin[(α – β)/2]
Substitution
sinα, cosα, tanα and cotα can also be represented in substituted form.
we replace
tan(α/2) = u
Relations mentioned above are as follows:
(1 – cosα)/(1 + cosα) = tan²(α/2) = u²
and
(1 – cosα)/sinα = sinα/(1 + cosα) = tan(α/2) = u
we solve
(1 – cosα)/(1 + cosα) = u²
after cosα and get:
1 – cosα = u² + u²cosα
u² + u²cosα + cosα = 1
cosα(u² + 1) = 1 – u²
cosα = (1 – u²)/(1 + u²)
now cosα can be replaced by what we’ve get now:
(1 – cosα)/sinα = tan(α/2) = u by (1 – u²)/(1 + u²)
we solve after sinα
[1- (1 – u²)/(1 + u²)]/sinα = umultiply with sinα, we get:
[1- (1- u²)/(1 + u²)] = u*sinαtransform right into a fraction with common denominator:
[(1 + u²) – (1 – u²)]/(1 + u²) = u*sinα:Counter left: Leave brackets out and drop them out
(take care of minus sign -,-u² = +u²!)
2u²/(1 + u²) = u*sinα
links und rechts durch u dividieren und rechts durch u kürzen:
Divide left and right by u and shorten by u, we get:
2u/(1 + u²) = sinα
or
sinα = 2u/(1 + u²)
tanα as we know, equals to
sinα/cosα
Both fractions are being divided:
2u/(1 + u²) / (1 – u²)/(1 + u²) = sinα/cosα = tanα
what we get, is (see first chapter sings, symbols, relationships)
2u(1 + u²)/(1 + u²)(1 – u²) = tanα
shorten by (1 + u²): and there we are:
tanα = 2u/(1 – u²)
finally the term of cotα
cotα = cosα/sinα = 1/tanα = (1 – u²)/2u
Summarized:
sinα = 2u/(1 + u²)
cosα = (1 – u²)/(1 + u²)
tanα = 2u/(1 – u²)
cotα = (1 – u²)/2u
More relationships in geometry
![](https://i0.wp.com/www.ibusciencecollege.com/wp-content/uploads/2018/01/Trigonometrie.jpg)
A = α, B = β, C = γ
Sinus rate
a / sinα = b / sinβ = c / sinγ
Cosine rate
For the right-angled triangle, the calculation of the edge length c Pytagoras applies:
a² + b² = c²
If angle C = γ > 0, <180 and ≠ 90 °, then c is calculated with the consine rate:
a² + b² – 2abcosγ = c²
Trigonometry finds wide application in mathematics, physics and technical science.
Other essential relations for the right-angled triangle
a = csinα
b = ccosα
a = btanα
b = acotα
sinα = a/c = cosβ
cosα = b/c = sinβ
tanα = a/b = cotβ
cotα = b/a = tanβ
Useful reading:
Formulas and Charts, Mathematics Physics, 3rd edition 1984, Orell Füssli Publishing Zurich (a yellow book)